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We report theoretical studies of the resonant scattering of light by perturbed atoms under conditions where
the amplitude of the incident electric field varies with time. Adiabatic perturbations are simulated by a
randomly fluctuating term in the energy separation between the resonant levels; lifetime effects are accounted
for by adding a small imaginary term to the separation. Assuming linearity, we derive a general expression
giving the intensity of the scattered light as a function of time. Explicit calculations are carried out in the
motional narrowing limit for a variety of cases. Interference and inhomogeneous broadening are assessed. A
brief analysis is made of recent scattering experiments involving Cr3* in Al,03. Incoherence in the source and

the motion of the target atoms are also considered.

I. INTRODUCTION

N a recent series of publications,'~ the author has
developed a theory of the resonant scattering of
light by perturbed atoms. The main purpose of these
papers was to show how the dynamics of the perturba-
tion was reflected in the frequency spectrum of the
scattered light. This was accomplished by calculating
the differential cross section for photon scattering in the
presence of the perturbations. The cross section, first
obtained by Kramers and Heisenberg,* characterizes
the scattering of a monochromatic beam of constant
amplitude. In the present paper, we will focus on a
somewhat different problem, the calculation of the
scattered intensity in situations where the amplitude
of the incident beam varies with time. Our purpose is to
discuss in some detail the connection between the time
dependence of the intensity of the scattered light, the
intrinsic properties of the scatterer, and the amplitude
of the incident field. Our analysis is intermediate be-
tween a formal study applying to all possible cases and
a report of detailed numerical calculations pertaining to
a particular system. We have made a point of display-
ing some of our results in full detail in order to facilitate
possible comparison with experiment. The stimulus for
this investigation comes in part from recent studies of
the resonant scattering of light by Cr3t ions in AlyOs
where a pulsed ruby laser was used as a source.?

In Sec. II, we will outline a semiclassical calculation
of the scattered intensity for an arbitrary time-depen-
dent incident amplitude. The resulting expression is
then evaluated in a variety of special cases. Interference
and inhomogeneous broadening are discussed in Sec.
IV, while the results reported in Ref. 5 are analyzed in
Sec. V. In Sec. VI, we summarize our findings. Miscell-
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aneous aspects of the calculations are relegated to the
appendices. It should be noted that the discussion of
some of the approximations we make is rather limited.
A more detailed analysis is given in II.

II. THEORY

Our approach parallels in many respects the analysis
of II. We begin by studying the scattering from a
single stationary atom. As in II, we simulate the effects
of adiabatic perturbations (i.e., those which do not in-
volve transitions between atomic states) by a randomly
fluctuating term in the atomic level splitting. Diabatic
perturbations (i.e., lifetime effects) are included by
adding an imaginary part to the level splitting at ap-
propriate points in the calculation. As discussed in
detail in II, the assumption of a Gaussian spectrum for
the fluctuations leads to a model which is applicable to a
broad range of experiments. In particular, the model
when evaluated in the motional narrowing limit simu-
lates the effects of phonons which are the dominant
perturbations in the Cr3+ experiment mentioned in the
Introduction.®

As was done previously, we treat the atom as an
effective two-level system with the Hamiltonian (in the
absence of the radiation field)

3eo(t) = [Fwo+ Abeso(t) ]S (2.1)

Here wo is the atomic frequency, dwo(?) is the fluctua-
tion, and S, is the z component of the effective spin
(S=3%). The interaction with the radiation field is
written

5e1(f) = 3a[ 8(1)S se—iort+eit- §(I)*S_eiortter] | (2.2)

where « is a constant involving matrix elements of ap-
propriate components of the dipole moment operator
taken between the resonant levels, §(7) is the amplitude
of the incident electric field (we assume electric-dipole
scattering is dominant), w; is the angular frequency of
the electric field, Sy =.5,£1S,, and € is a small positive
constant.

As was shown in detail in I, the scattering process

6 D. E. McCumber, Phys. Rev. 133, A163 (1964).
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occurs when the incident electric field induces a time-
dependent electric-dipole moment in the system. The
electric dipole then radiates giving rise to the scattered
light. The induced dipole moment is determined by the
operator S_ which obeys the equation

d :
17—S_(£) = Al wotdwo(t) JS_(1) — S.(Dad(f)eiorttet

dt (2.3)
At this point, it is convenient to assume that the elec-
tric field associated with the incident wave is sufficiently
weak so that we may neglect its effect on the time de-
pendence of .S.(f) on the right-hand side of (4.2). When
this is the case, the scattering process is linear in the
sense that the induced moment is proportional to the
amplitude of the field. Under steady-state conditions,
linearity is maintained if there is negligible saturation
in the scattering process. The condition that the satura-
tion be negligible can be written?

28 iy Aww, (2.4)

where 1/7z is the lifetime in the upper level and Awgy
is the homogeneous linewidth. In a pulse experiment,
the behavior is linear if the angle through which the
effective spin is turned in the rotating frame is much less
than unity. For resonance (wi1=wo), this condition can
be written®

1 0
- / a8(t)di<1. (2.5)

Denoting the part of the induced dipole-moment
operator which gives rise to the resonant scattering by

Pina(t), we have
Pina()=BS-5(1),

where $ is a second constant involving matrix elements
of the dipole-moment operator and S_5(f) is the solu-
tion of (2.3) which vanishes as { ——

—a 0
Sgs(t) = ‘—Sze_'”“"”/ dxl:g(x+ t)ei(wo—wl)x-l-'yLz

ih
-+t
Xexp(i[ Bwo(i)df>:l , (2.6)

where we have included the effects of a finite lifetime by
replacing wo with wo—#yrz.
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Apart from constants, the intensity of light scattered
in a given direction, averaged over a time interval
27 /e, is given by (| Pina|2), where the angular brackets
denote an average over the fluctuations in dwo. If we
make the further assumption that &(¢) and dwo(f) vary
slowly in a time interval wy%, then the principal con-
tribution to Pi,q comes from the factor e~*1t, Denoting
the intensity by I(f), we have

0 0
I(t) =A/ dx1/ dxgé’(xl—l—t) &* (m—l—t)e““"’_‘“) (w1—a2)

XeXP[VL(x1+x2):|<exp(i / :l Bwo(i)di>>, (2.7)

where
A =aB%w1*/4h.

In obtaining (2.7), we have implicity assumed that the
random process giving use to the frequency fluctuations
is stationary, i.e.,

(AL o)
:<exp<i / :l 6w0(i)di)> . (2.9

In addition, we have supposed that the separation be-
tween the levels is sufficiently large so that in the
absence of the light there is a negligible equilibrium
population in the excited state.

Equation (2.7) is the principal result of this section.
It displays the intensity of the scattered light as a
double time integral over the amplitude of the incident
field. It should be remembered that this intensity, which
would be measured in a photon-counting experiment,
has an angular dependence which arises from the matrix
elements concealed in the general parameter 4. A second
point is that were dwo(f) equal to zero, I(f) would take
the simple form

2.8)

2

(2.10)

0
I()=4 \ / dx18 (21 1) giwosrtryLa

In view of this, it is worthwhile to write 7(f) as the sum
of two terms:

0 0 0 0
I(t)=A/ dm/ dxzé’(xl—i—t)é’*(xz—!—t)ei(“w—“’l’<“—“)+7L(11+”><exp<—i] 6wo(f)di>><exp<i/ 6w0(t')di)>
—o0 —00 x1 x2
0 0 1
+A/ dxlf dx28(x1—|—1)8*(x2+t)ei(‘°°_“’1) (“_”H”‘(“+”)l:<exp(i/ 5wo(i)di>>
—00 —00 2

=I{)+AI().

e ) )]

?This equation is an adaptation of the familiar magnetic resonance condition v2H2T1Te<K1 [A. Abragam, The Principles of

Nuclear Magnetism (Clarendon Press, Oxford, 1961), Chap. 3].

8S. L. McCall and E. L. Hahn, Phys Rev. Letters 18, 908 (1967), Eq. (3).



1 TIME-DEPENDENT PHENOMENA ASSOCIATED WITH- - .

The first term in (2.11), I(?), is the intensity arising
from the average value of the induced dipole moment
{Pina), while the second term is the contribution of the
fluctuations (Pina2) —{Pina)?* .

At this point, it is convenient to specialize to the
Gaussian model,? in which case

<exp(i /, N Bwo(i)di)>

2

=exp(-—-21- / dt / :ldtg(éwo(ll)awo(lz))). (2.12)

If we further assume that the correlation time 7,
characterizing the fluctuations in dw, is short compared
with |wo—w1| ™! and yz! (although long compared with
w17Y), we have the motional narrowing limit?

{8wo(t1)dwo(tz) )= 2Awpd(t1—12) .
In this case, we obtain the result

<exp<iv/;Zl éwg(i)di)>=exp(——Alex1~x2l], (2.14)

2

(2.13)

where Awp is on the order of (Swe®)7.. Equations (2.7),
(2.11), and (2.14) are the basic equations in the analysis
which follows.

III. SPECIAL CASES
- In this section, we will evaluate the scattered in-

tensity in the motional narrowing limit for various
&(t). After combining (2.11) and (2.13), we have
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assuming &(f) is real. From these equations, it is
evident that Awp and vz, contribute in the same way to
I(#) but in rather different ways to AI(¢). This result
is anticipated in previous studies':? where it was found
that in coherent scattering only the total linewidth
(Awp+7r) entered, whereas the incoherent scattering
depended also on the ratio Awp/vz.
We now consider a number of special cases.

A. &(t)=&o(const)

I_(t) — 2 A 2]~1 33)
ey = [(w1—wo)*+ (yz+Awp)* ], 3.
AI(D) B Awp/v1, (3.4)

48 (1—wod)+ (vo+Awp)? |

These results have a simple physical interpretation.?
The first equation is the intensity associated with
phase coherent scattering while the second is the
intensity arising from the fluorescence. It is apparent
that the second term differs from the first by the factor
Awp/7v1, the same factor which characterizes the ratio
of fluorescent to coherent cross sections.?

B. &(t)=8c for t<0; &(f)=8&, for t>0
When ¢<0,

_ 0 0 I(t)/A80*= /[ (wo—w1)®+ (yr+ M Awp)?], (3.5)
I(H)= A/ dxlf dx28(x1+1) 8(wat1) exp[i(wo—w1)
e e AI(?) eM[Awp/(vz+N)] (3:6)
0 8 (xol_xZH_ Ot ben)Cut )], (1) A8 (wo—w)™+ (vt Awp)? ‘
AI()=4 /_ dxr f_ due8(oxt 1) (wat-1) When £>0, since the expressions are rather lengthy,
v we give only I(¢). The expression for (£) can be obtained
Xexpli(wo—w) (=) Fyr (o) ] from I(f) by first setting Awp equal to zero and then
X {exp[ —Awp|x1—a2| ] replacing vz by vz+Awp; AI(?) is then given by the
—exp[Awp(x1t+x2)]}, (3.2) difference I(t)—I().
I(1) Y +A+Awp 1
- e——27Lt
A& vr+N  (wo—w1)*+ (vz+ M Awp)?
exp[ —’th — Ath—i— i(wo—an)l:] { 1— exp[— ’)/Llf"— Awpt— ’i(wg —wl)l] }
+2Re I

[vz—Awp+i(wo—wi)]
v+ Awp 1

lre—nyLt

[7L+>\+Awp—i(wo—w1)]

Y.—Awp 1

v (vr+Awp)*H (wo—w1)?

_zevat—Ath Re{

vr  (yp—Awp)*+ (wo—w1)?

ei(wo“wl)t

[vz+Awp —i(wo—w1)]

[VL*AwD+i(w0~w1)]ﬂ} , (3.7)

where Re means the real part of the expression in curly brackets.
It is apparent that the change in the time dependence of the amplitude introduces transients in the intensity.
Some of these die off in a time (8wp—+yz)~* while others persist for a time yz L. As ¢ approaches infinity, however,
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we find
Ity  vyit+Awp 1

A8 v (@o—w1) ™ (yr+Awp)?

(3.8)

in agreement with (3.3) and (3.4). The rapidly decaying transients arise from changes in the coherent component
of the induced moment, while those occurring over an interval y;~! are associated with changes in the intensity of
the fluorescence.

C. E(t)=§& for t<0; E(f)=8&¢ for >0

Where t<0, _
I(t)/A80*=[(wo—w1)*+ (yr+Awp)*] !, (3.9)

Al(t) B AwD/'yL
48  (wo—w1)™+ (v+Awp)?

Equations (3.9) and (3.10) are, of course, the same as (3.3) and (3.4).
Where ¢> 0, since the expressions for I(f) and AI(f) are also rather complicated, we again display only I(%).

](t) 'YL+ Awp 1
= 6_2’714‘
A&? v (wo—w1)? 4 (vz+Awp)?

(3.10)

etV [y 4+ Awp —i(wo—cw1) |

[vo—=A—Awp~+i(wo—w1) vz —MAwp —t(wo—w1) ]
yL—A+Awp 1 yrL—A—Awp
+ g2 N 2 A
vyi—\N  (yr—AAwp)* (wo—w1)? YL—A\
X[(wo—w1)?+ (yo—A—Awp)? ] —2¢ 272 (wo—w1)*

+ (ve=A—=Awp)(yr+Awp) JL(yz =N~ Awp)?+ (wo—w1) I [(vr+ Awp)*+ (wo—w1) 2], (3.11)
It is to be noted that I(f) has transients similar to those displayed in Eq. (3.7). However, as ¢ approaches infinity,
1(H)~0, (3.12)

as is to be expected, since the incident amplitude has become exponentially small. The intensity in the limit as \
becomes very large assumes the simple form

() v+ Awp et
A& ve  (@o—w)?+(yi+Awp)?

indicating an exponential decay in the absence of the incident light with a rate characteristic of the lifetime of the
excited state.

_er—th—kt—Aa} Dt Re

(3.13)

D. &(f)= &M (Symmetric Pulse)

For t<0, I(¢) and AI(f) are given by Egs. (3.5) and (3.6), respectively.
When >0, we again display only I().

I() 1 1

='YL_1 Re {exp[—t('yl,—{— Awp+ )\+1(w0—w1))]< - + - )}
A2 v+ Awp+Ati(wo—wi) vYL—A—Awp—i(wo—wi)

1 1
—(vz—N"tR ~ iy +M - Awp+i(we— < + )}
Gra=2) C[exp[ (e wptian=en)] Y.—A—Awp—i(wo—w1)  yr—A+Awpti(wo—w1)
Ne 272t (y 4+ Awp+)\) + Ne 2Lty —\—Awp)
Yty N[ (wo—w)?+ (yr+A+Awp)?]  (vo—Nvi[(wo—w1)?*+ (yr—A—Awp)?]
vL—A+Awp 1
PV . (3.14)

=N (wo—w1)?+ (yr—AAwp)?
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In Sec. V, we will make use of (3.14) when Awp>N>v1.
In this limit, we have

1(1)/A8¢*= (Awp/N)[ (01— w0)*+ (Awp)* T

X (2ett—e=) . (3.15)
Equations (3.5), (3.6), and (3.15) show that the in-
tensity of the scattered light at time ¢ depends on the
integral of the incident intensity (i.e., the number of
photons absorbed) over the interval [—, £], a result
which is characteristic of a fluorescent process. We ob-
tain this behavior because, when Awp>>v1, the strong
fluctuations in the atomic frequency completely destroy
the coherence between the incoming and outgoing fields.

The purpose of this section has been to apply the
general equations derived in the preceding section to a
variety of simple cases. In connection with this, two
points need to be stressed. First, we have calculated the
scattering only in the motional narrowing limit, and
second, we have considered only single-atom scattering.
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Phenomena associated with scattering from an ensemble
of atoms will be discussed in Sec. IV.

IV. INTERFERENCE AND IMHOMOGENEOUS
BROADENING

In this section, we will examine effects which come
into play when one is considering scattering from an
ensemble of atoms. We first discuss interference. We
assume that the atoms are located in a region whose
dimensions are large compared with the wavelength of
the light. As was shown in ITT, if the atoms are randomly
distributed within this region, interference effects
vanish for other than forward scattering. The resulting
cross section then becomes the sum of the cross sections
of the component atoms. What we wish to consider here
are effects arising from departures from a fully random
distribution.

If we designate the position of the jth atom by r;
and the difference between the wave vectors of the in-
coming and outgoing photons by Ak then the intensity
of light scattered from an ensemble of identical atoms
I becomes

0 0
IM=A{ > e’m"(”*'f)/ dxlf A28 (x01+1) 8*(x2+1) exp[i(wo—wi1) (1 —2x2) + 1 (w1+x2) ]

X<exp<—i/0 5w0(5)di)><exp(i/0 6w0(i)dt_>>—|-§ /_0 dx1/_0 dx28(x1+ 1) 8*(wat+1)

Xexp[i(wo—w1)(xl—-xz)+7L(x1+x2)][<exp<i/u 5w0(g)di)>

7,7

2

—<exp( —i / 0 6w0(i)di)><exp<i / 0 6w0(i)zii)>]} @)

In (4.1), we have made the assumptions (1) that the amplitude of the electric field is the same at all sites and (2)
that the frequency fluctuations at the different sites are independent of one another. In order to proceed further,
we divide the region where the atoms are located into cells of volume A3, where A is the wavelength of the light.?
If the volume of the system is denoted by V, then the total intensity can be written

AV 0 0
Itofl([): K;((nﬁ)—(n,x)l)/ dxlf dng(xl—i-t)g*(xz-i—t) exp[i(wg—wl)(xl—xg)—f—'yL(xl—I—xg)]

X<exp<-—i / (: 5w0(i)di>><exp(i / Z awo(t')di)>+ %{nA) [ [; dy /_ 1 dxs8(x1+ 1) 8* (x0+-1)

Xexp[i(wo—w1) (1 —x2) +yr(+ xz)][<eXP(i / ) awo(i)di)>

x2

—<exp<—i / 0 Bwo(i)di>><exp<i f 0 6w0(£)dt>>:' @)

where (74) is the mean number of atoms in the cell and (74%)—({n4)* is the dispersion in 7,. For a completely

*W. Kh H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1955), Chap. 21, ‘
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random distribution, (#,%)— (n4)%= (n4), so that
AViny)y [° 0
Lot(H) = T/ dxl/ dx28(x1+1) E* (x0+-1)

X exp[i(wo—w1) (1—x2) + v (w1t x2) ]

X<exp<i / awo(i)d£>> 43)

On the other hand, if there is clustering or a regular
distribution (i.e., a lattice), interference effects will be
present, and the total intensity is no longer the sum of
the intensities contributed by the different atoms.'®

The second point concerns the effects of inhomo-
geneities which give rise to a distribution in resonant
frequencies. In order to analyze this effect, we will
assume that the spatial distribution is sufficiently
random so that i has a form similar to (4.3), except
that we must also average over wo. If ®(wo)dwo is the
probability that the resonance frequency lies between
wo and wo-duy, then

0 0 0
Itgt(t) = N/ (P(wo)dwo/ dx1/ dng(x1+ t) é’*(xg—|— t)

X exp[li(wo—wi) (¥1—x2)+v (1t 22) ]

><<exp(i / L 6w0(i)di)> , (44

where N is the number of resonant scatterers. If ®(wj)
is a Lorentzian, (8/m)[(wo—wo)2+ 821", this equation
takes a particularly simple form when we assume a
Gaussian spectrum for dwo and pass to the motional
narrowing limit:

0 0
Lo)=N [ du f d6s8 (1) &* (a-1)

X exp[i(@o—w1) (%1 —x2)Fyr(x1+%2) ]

Xexp[ —(Awp+8) | 21— x2|]. (4.5)
Under these conditions, the effects of inhomogeneities
can be accounted for by replacing Awp with Awp—+6
where § is a measure of the width in the distribution of
resonant frequencies. It should be noted that this is
the case only for the integrated (over frequency)
intensity. The effect of a distribution in resonant fre-
quencies on the frequency dependence of the differen-
tial cross section is rather more complicated as can be
seen, for example, by averaging the right-hand side of
Eq. (2.11) of II over ®(wy).

10 Interference and other phenomena associated with light
scattering in condensed media are discussed in detail by I. L.
Fabelinskii [ Molecular Scattering of Light (Plenum Press, Inc.,
New York, 1968)].
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V. ANALYSIS OF EXPERIMENTAL STUDIES

In this section, we will discuss recent resonant scat-
tering experiments reported by Barocchi ef al.® These
investigators studied the scattering of light by Cr3*+
ions in AlyOs. The source was a pulsed ruby laser, and
the transitions were between the *4, ground state and
the 2E excited state. By making use of the temperature-
dependent shift of the resonant levels, they were able
to tune the target to the incident frequency. When this
happened, there was an enhancement of the scattered
light.

The experiments were performed on a sample of
AlLO; doped with 0.059, Cr®+. The duration of the laser
pulse was on the order of 1078 sec, and the scattered
light was detected at right angles with respect to the
incident beam. By taking advantage of the aforemen-
tioned thermal shift, they obtained a resonance in the
neighborhood of 240°K. At temperatures above 77°K,
homogeneous broadening arising from the Raman
scattering of phonons is the dominant linewidth
mechanism.! At 240°K, the value for the linewidth
reported by McCumber and Sturge is 1.8X10'2 sec™.1!

The remaining parameter needed for the comparison
between experiment and theory is vz, the lifetime in
the upper level. Some care must be exercised here,
since the 2E level of Cr3* is split by trigonal perturba-
tions and spin orbit coupling into a pair of doublets
2A(2E) and E(2E) separated by 29 cm™.!2 In the
Barocchi experiment, the scattering comes mainly
from the E level. The lifetime in the & level is deter-
mined by two processes, radiative transitions to the
ground state, which occur at the rate 0.3)X10% sec™,
and nonradiative phonon-assisted transitions to the
24 level. At 240°K, the phonon-assisted transition is
by far the dominant process. A lower limit on this
transition rate can be obtained by evaluating the one-
phonon contribution. Using data reported by Gesch-
wind et al.,'® we find yxr (one phonon)=10° sec™.
Since multiphonon processes are important at high
temperatures, the actual value of the nonradiative
transition rate may be one or two orders of magnitude
greater than the one-phonon value, although still less
than Aw D-

The question then arises in making the comparison
between experiment and the theory outlined in Secs.
IIT and IV if one uses the radiative transition rate or
the nonradiative rate for yz. We argue that the radiative
rate is to be used in comparing the intensities of the
coherent and incoherent scattering. The reason is that
once the ion has undergone a phonon-assisted transition
from £ to 24, it is far more likely that it will return to
the I state by the inverse process than undergo a radia-
tive transition to the ground state. As a consequence,

( u D) E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682
1963).
12.S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 13, 880 (1958).
18 S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn,
Phys. Rev. 137, A1087 (1965).
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while the phonons serve to keep the populations of the
24 and E levels in thermal equilibrium, it is only the
radiative transitions which depopulate the upper level
in the sense implied in Secs. IT and III.

This argument can be stated in somewhat more
mathematical terms. If we assume that the incident
amplitude is constant in time then the incoherent and
coherent intensities are in the ratio Awp/vr. If we
replace vz, by vr+vw~r (R and NR denote radiative
and nonradiative, respectively), we must also_include
the contribution to the fluorescence from K which
follows phonon assisted transitions from K to 24 and
back to K. If we make use of the fact that the radiative
transition rates from £ and 24 to the ground state are
about the same and further, and that at high tempera-
tures (R7>>29 cm™) the phonon-assisted transition rate
from E to 24 is comparable to the rate for the inverse
process 24 to E, we find that the ratio ® of the in-
coherent to coherent intensities can be written as an
infinite series:

®R=[Awp/(vr+vve)J{1+[vve/(vr+var) ]?
+ywe/(vetyvr) 14}
=[Awp/(yr+vyve) {1 —[ywr/(vet+yne) 12}t

In this equation, [yxr/(vy~r+vr)]? is the probability
that the ion undergoes at least one nonradiative transi-
tion from E to 24 and back to E before undergoing
radiative decay. When vy r>>7vg, the ratio becomes

®R= AwD/Z'YR, (52)

as anticipated from the preceding discussion. The
factor of two indicates that only half the fluorescent
transitions originate in the E state; the remainder
come from 24 .

On the basis of the discussion given above, the in-
tensity of light scattered by a single atom in the
Barocchi experiment should have the time dependence
shown in Eq. (3.15) for £20. The values of vz, A, and
Awp that apply are 103, 108, and 102 sec™, respectively.
The important point here is that the intensity decays
as exp(—2vyrt) after the incident light has been shut
off [exp(—2N\)<<1]. Aslong as 2yt 1, the intensity of
the fluorescence is within a factor of 2 of the total in-
tensity at £=0. This happens because the phonons com-
pletely destroy the coherence of the scattering process,
as is indicated by the fact that ®=10°. Consequently,
the scattered light is incoherent and emerges over a
time comparable with the lifetime of the excited state.
In the experiments reported in Ref. 5, no attempt was
made to monitor the intensity as a function of time.
However the possibility of making such measurements
is being explored.!*

It is important to note that the analysis we have
made has been based on the assumption that the dis-
tribution of atoms which are resonant with the light

(5.1)

14 F. Barocchi (private communication).’
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is completely random and that the scattering process is
linear. If scattering comes primarily from clusters of
atoms ((#a%)—(na)>>(na)), then the coherent com-
ponent will be enhanced in the manner predicted by
Eq. (4.2). Linearity will be assured if the experiments
are carried out at very low intensities.

VI. SUMMARY

In the preceding sections, we have outlined a cal-
culation of the intensity of the light which is reson-
antly scattered by an ensemble of atoms. We have
separated the single-atom contribution into its co-
herent and incoherent parts and have examined the
effects of interference and a distribution of resonant
frequencies.

There are, however, several aspects of the theory
which deserve further comment. First, we have approxi-
mated the resonant atom by a two-level system. This
does not appear to be a serious defect as long as I(f)
is interpreted as the intensity in a small band of fre-
quencies centered about the resonance frequency. This
is required so that photons emitted in fluroescence from
other levels are not counted. Second, we have assumed
that the scattering atoms are stationary. In Appendix
A, we discuss the modifications that must be made when
they are in random motion. Finally, if the equations of
Secs. III and IV are to be of use, the incident amplitude
must vary in a regular (and known) way with time.
This, of course, presupposes a coherent source such as
provided by a laser. In Appendix B, we extend our
analysis to allow for fluctuations in &(f).

It is apparent, from the analysis in Sec. III, that
scattering measurements carried out with time-
dependent sources permit one to determine in principle
unique values for both Awp and vz, whereas steady-
state absorption measurements yield only the sum
Awp+yz. Information about the intrinsic properties
of the scatterer is always valuable. However, we feel
that the interaction of a scattering system with a radia-
tion field is an interesting problem in its own right. It is
our hope that further experimental studies of this
problem will be undertaken with scatterers whose
intrinsic properties are well understood.

APPENDIX A

The purpose of this appendix is to modify Eq. (2.7)
to allow for random motion of the target atoms. If
r(?), taken to be a classical variable, denotes the position
of the atom at time ¢, then we have

Pinat) = iafl 1S e iorte—ka 10

t
Xexpl:—i(wot—l—/ 5wo(i)di):l
X/ dt, eXpI:i(wot’+/ 5w0(i)di>]eikx- (') . (Al)
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where k; and k, are the wave vectors of the incoming
and outgoing photons, respectively. With (A1), we
obtain the equation

0 0
I(f) = A/ d?ﬁ/ dng(xl—f- I)g*(xz—f-l')

Xgi(wo—wl)(x1~x2)+7L(11+w2)<exp<i/ 5w0(t-)di>>
x3
a1
X<exp<ik1~/ v(i)r]i)>, (A2)

x2

where v({)[=#(/)] is the velocity of the particle. In
obtaining (A2), we have made the assumption that we
could separate the averaging over the fluctuations in
dwo, which arise from collisions between atoms, from
the average over the velocities, a point which is dis-
cussed in detail in III. If we treat kinematic effects in
the Gaussian approximation® and collisions in the
impact limit,® we have

0 0
I(t)=A/ dxlf da (14 1) E* (wot-£) e¥(wo—wn) (e1—e2)

X eibde(@1—a2) py L (w1t22)—7vc| 21— 22]

1 a1 x1
Xexp(— E / dtl/ [th(krV(tl)kl'V(l‘z)),,) , (AS)

DAVID L.
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where A, is the shift in resonance frequency and v,
is the collision width.

In the case of an ideal gas, the velocity auto-
correlation function (ki-v(t)ki-v(f2)), has the sim-
ple form %.2(K7/m), where K is Boltzmann’s con-
stant, 7" is the temperature, and m is the mass of
the atom. The final exponential factor in (A3) can be
written exp[[ — (KT/2m) (x1—x2)%].

APPENDIX B

In this appendix, we indicate the modifications in
(2.7) that are necessary when the amplitude fluctuates
in a random way with time. When this is the case, we
replace the product 8(wi+7£)&*(xas+1) by the correla-
tion function (&(x1+1)E*(x.41))e, where the brackets
symbolize a statistical average over the fluctuations
which are assumed to have a time scale which is long
compared with wi™. For example, a possible functional
form for the correlation function might be

(8(x14-1) 8*(wat-1) )e=S(t)e~lr—zal | (B1)
where S(f) is a slowly varying envelope function and
¢~'is a measure of the time over which the electric field
remains correlated. It is worth pointing out that, if the
correlation function has the form displayed in (B1), the
¢ dependence of the intensity in the motional narrowing
limit is determined by the sum ¢+ Awp. Thus, if
Awp>>¢, the fluctuations in § may be neglected.



